
Web Application for Aqualab 
Sensor Monitoring and 
Analysis - Milestone 6

Ruth Garcia, Haley Hamilton, Greg Thompson



Milestone 6 Overview:
● Implement, test, and demo final UI additions/styling

○ Included adding final tweaks to the frontend including clearer ranges, the appearance of 
charts, CSV file downloading format, and the calculated data relationships.

● Implement, test, and demo user roles and permissions
○ Implementing JWT tokens and flask decorator functions to associate a client with a user and 

restrict/grant access to features based on their user role.

● Final system integration and error handling
○ Implemented stop run button, change range and change frequency features, updates after 

testing with live sensor and testing different “program recovery after shutdown” scenarios



Milestone 6 Overview:

● Implement, test, and demo of the entire system
○ Tested system with lab sensor multiple times, everything is functional.

● Conduct evaluation and analyze results
○ Tested 10 different features and UI pages cases with 7 lab volunteers and three different 

roles
● Create user/developer manual

● Create demo video

● Make app more accessible remotely and Create a User Logging Feature
○ Did not have enough time to complete this, future plans to help lab team/next project 

iteration are in the works!



Milestone 6 Progress Matrix:

Task Greg Haley Ruth

Implement, test, and demo final UI additions/styling 0% 80% 20%

Implement, test, and demo user roles and permissions 0% 70% 30%

Final system integration and error handling 60% 40% 0%

Implement, test, and demo of the entire system 30% 50% 20%

Conduct evaluation and analyze results 33% 33% 33%

Create user/developer manual 80% 20% 20%

Create demo video 0% 80% 20%

Make app more accessible remotely - - -

Create a User Logging Feature - - -



User Manual
● Lengthy document to explain the system from 

both user side and developer side
○ The User component explains all action needed to 

install, configure, and run the application.
○ The Developer component contains a description of the 

purpose of each file, important variables, and the 
expected execution flow.

● Continuing Project
○ Dr. T intends to continue this project in the future with 

more Computer Science students.
○ The objective of this manual is to provide a future team 

the ability to understand and effectively modify our 
software.



Crash handling
● The threads have each been given an escape if a crash is detected

○ This prevents zombie threads from persisting after a fatal error in the main system
● Fatal errors in any thread besides the webapp and sensor handler are recoverable 

during runtime
○ The threads are reactivated with the same parameters and the error is logged

● Crashes in the main thread do not lose data
○ As the database persists separately to the system, it continues operation after the main thread crashes
○ Any sensor thread actively reading or writing a value will be allowed to finish before their escape 

triggers
○ This protects the system from data corruption as a result of a software crash

● Operating System shutdown is a risk
○ Events such as power loss or BSOD could shut the program down suddenly, creating corrupted data 

points
○ These will be visible and removable by manual inspections of the latest data upon restart



Final System Integration
Includes:
● Full implementation of final features (change range, change frequency)
● Implementing a stop run button 
● Testing and making changes for “Program recovery after shutdown” scenarios
● Made changes to ensure proper connection to sensors

● Client explained that 1 water sensor would read both dissolved oxygen(DO) and 
carbon dioxide (CO2) and both we need to be monitored. 

● The needed user interface, backend, and database changes were made to 
accommodate this



User Roles/Permissions
● Implemented JWT token creation at successful login
● Token contains user id and role
● Basic functionality:

○ User tries to complete action
○ Client token sent to the backend with the action request
○ Role is verified can action completed / receives alert



Test/Demo Entire System:
Tested the system hooked up with the 
sensor:
● Made changes to ensure proper sensor 

connection
● Let system run/played with sensor 

water to monitor data
● Tested program recovery scenarios 

(unplugged sensor, sensor reboot, 
etc…)



Full System Demo:
https://www.youtube.com/watch?v=3nbFlJ7X27o&ab_channel=HaleyHa
milton 

https://www.youtube.com/watch?v=3nbFlJ7X27o&ab_channel=HaleyHamilton
https://www.youtube.com/watch?v=3nbFlJ7X27o&ab_channel=HaleyHamilton


UI and User Acceptance Testing/Evaluation:
● We did not get to user logging

○ Will implemented by a future team

● User Acceptance was completed 
○ 2 admin
○ 4 observers
○ 10 different testing scenarios

● Analysis?
○ Overall: Client very satisfied!
○ Our Change Range button should be ‘louder’
○ Easy to navigate and quick to understand UI
○ Alerting system on screen could be more 

obvious



Lessons Learned?
Importance of agile development process: 
● Difficult to align schedules
● Easy to lose sight of tasks that were/needed to be completed for the milestone 
● Originally used JIRA, but it was difficult to keep updated and became extra work
● Important to remember how helpful weekly scrum meetings and daily stand ups 

can be.
Importance of planning: 
● difficult to plan a complex system with a lot of features upfront
● Would have benefited the project to spend more time in this area
● Ex: main program backend and architecture of the React frontend 
● Moments we lost sight of some intended features/functionality and were not 

implemented in the easiest/scalable/best way



Questions?


